

add energy

Completion Engineers: Decision Making with Cross Discipline Integration

> By Dan Gibson From add energy a global consulting engineering firm www.addenergy.no

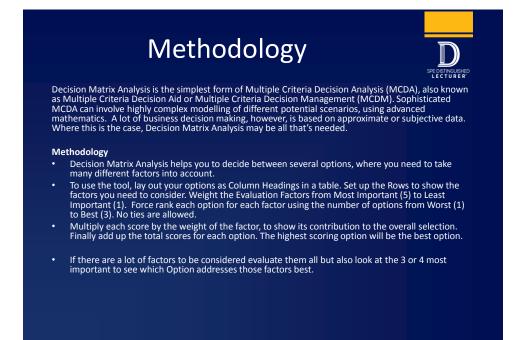

About the Author

Dan Gibson is a Senior Completions & Well Integrity engineer with over 35 years of experience. He has worked in Facilities, Production, and finally Completion Engineering. Dan and his wife have lived across the USA (Anchorage, Denver, Houston) and around the world in Gabon, Congo, Egypt, Scotland, and Australia. He understands both low cost, tight margin and high value, high cost well environments and how to be successful in both.

Dan was an expert witness in the Deepwater Horizon/Macondo trial. He has authored or co-authored a number of papers ranging from polymer flood management to ice mechanics and most recently an innovative ICD system.He is one of the most active members of SPE Connect where SPE members can readily contact him and the entire SPE community with questions.

5

Evaluation Method - 1


This decision process is based on Decision Matrix Analysis which is one of the simplest forms of Multiple Criteria Decision Analysis

• The key evaluation criteria, and their importance, are clear

Key Evaluation Fa	What are some	hoice 2	Choice 3
Safety		eds to d	etermine
Gas Mileage	of the key factors	portant	for <u>this</u>
Seats			
Cup Holders	you might think		
			lers in the
		ese facto	rs is critical
	buying a car?		

Multiple Criteria Decision Analysis (MCDA)

Evaluation Method -2

Next prioritize the evaluation factors

- Team needs to agree to the ranking
- Different prioritization will result in different outcomes
- How powerful is it to agree on the criteria and their importance

Key Evaluation Factors	Importance 4 is High					
Safety	4	Second - the <u>Team</u> needs to determine the <u>most</u> important factors for this completion				
Gas Mileage	3					
Seats	2					
Cup Holders	1	These are Ranked by the Team				
		<u>as a Group</u> which is important				
		when trading off priorities				

Decision Matrix Analysis

Evaluation Method -3

Chose the alternatives to be evaluated

• Limit the choices to real options for the problem

Key Evaluation Factors	Importance 4 is High	Compact Car	Pickup Truck	Minivan			
Safety	4						
Gas Mileage	3	Third - list the options for this evaluation					
Seats	2						
Cup Holders	1	These are provided by the person running the evaluation					

Evaluation Method - 4

Fourth, the Integrated Team evaluates each option

Use of a forced ranking system is required

- High number = Most Important
 - No ties if at all possible
- Should Ignore Importance when scoring to ensure fairness
 - In practice I hide the ranking column and even shift the rows

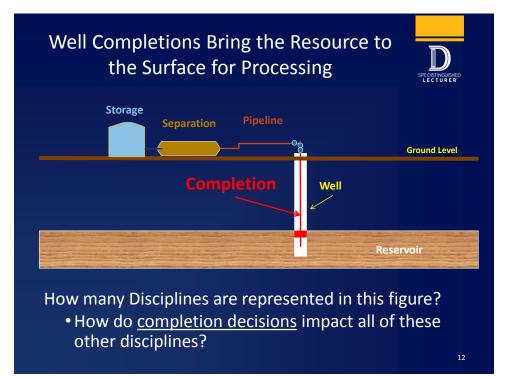
Key Evaluation Factors	Importance 4 is High	Compact Car	Pickup Truck	Minivan
Safety		1	3	2
Gas Mileage	Hide the	3	1	2
Seats	Importance Values	2	1	3
Cup Holders		2	1	3
Decision Matrix Analysis				0

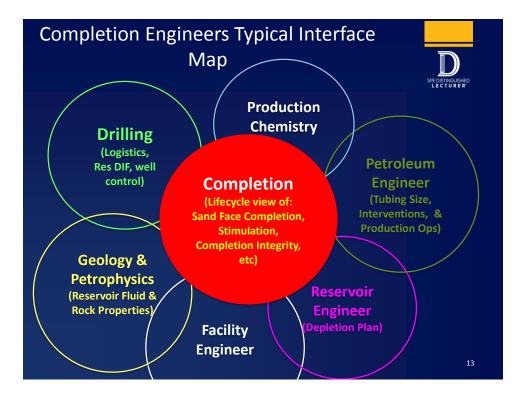
Evaluation Method - 5

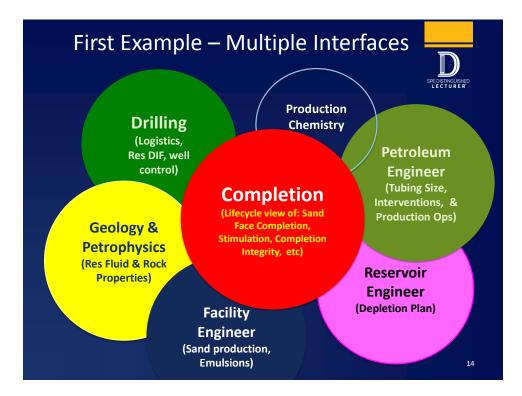
Finally, calculate the weighted scores to determine the best option

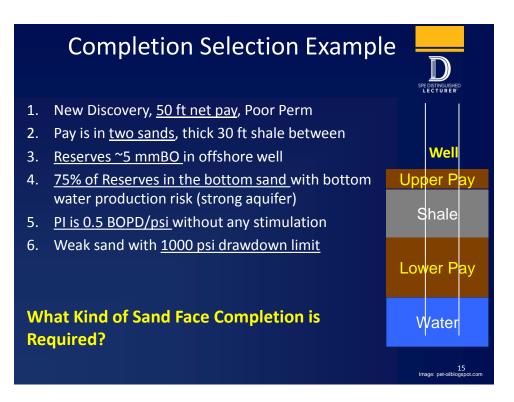
- Multiply Importance times Option Score
- Should Ignore Importance when scoring to ensure fairness
 - $-\$ In practice I hide the ranking column and shift the rows

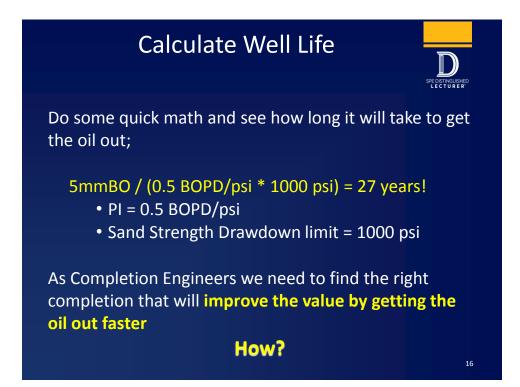
Key Evaluation Factors	Project Importance 4 is High	Compact Car	Pickup Truck	Minivan
Safety	4	→ 1	3	2
Gas Mileage	3 —	→ 3	1	2
Seats	2 —	→ 2	1	3
Cup Holders	1 —	→ 2	1	3
Weig	hted Ranking	19 = 4*	*1+3*3+2*2+1*	[•] 2

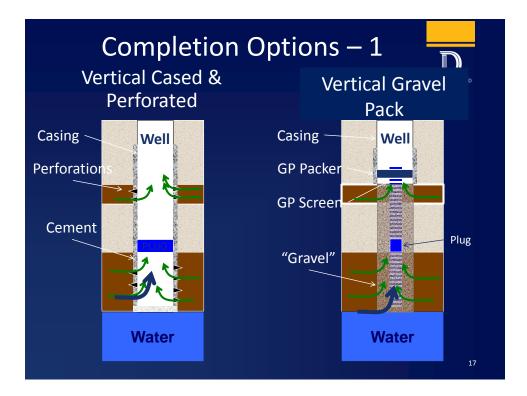

Evaluation Method - 6

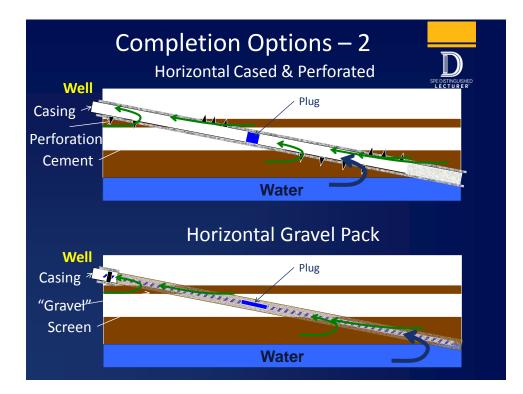

Repeat and calculate the weighted scores to determine the best option

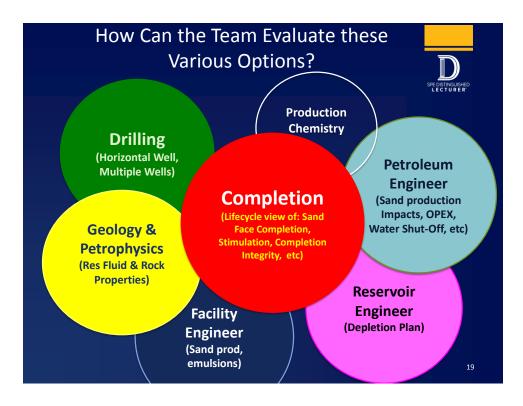



- Clear decision process
- Group Participation provides understanding for decision
- Easily documented for the record


Key Evaluation Factors	Project Importance 4 is High	Compact Car	Pickup Truck	Minivan	
Safety	4	→ 1	3	2	
Gas Mileage	3 —	→ 3	1	2	
Seats	2 —	→ 2	1	3	
Cup Holders	1 —	→ 2	1	3	
Weig	hted Ranking	19	18	23	







Evaluation Method - Factors

Each Completion Type will meet the Well requirements slightly differently

- It is now up to the CE to <u>lead the discussion with the integrated</u> <u>team</u> to determine the best type of completion for this well
 - Lets look at the Decision Matrix Analysis

Key Evaluation Factors	
Sand Prevention	First the <u>Team</u> needs to determine what
Production Rate	factors are important for <u>this</u>
Water Shut- Off/Reserves	completion
Contractor Capability	Getting the other stakeholders in the
	room to discuss these factors is critical

Evaluation Method - Factors

Getting Folks to Agree on a Priority Ranking is critical to selecting the right completion to deliver your most important evaluation factors i.e. business value drivers

Note: This is an example only a real evaluation may have 20 evaluation factors considered but only 5-8 key evaluation factors in my experience

Key Evaluation Factors	Project Importance 4 is High		the <u>Team</u> ne			
Sand Prevention	4	determine the <u>most</u> important factors for this completion				
Production Rate	3					
Water Shut- Off/Reserves	2	These are Ranked by the Team as a Group which is important				
Contractor Capability	1		ading off pri-	-		
		when u	aunig on pri	onties		
Decision Matrix Analysis				21		

Evaluation Method - Options

Then Compare the Completion Options against the important factors

- This is an example only. A real evaluation may have many different completion options.
 - Note: OHGP = Open Hole Gravel Pack , C&P = Cased & Perfed

Key Evaluation Factors	Project Importance 4 is High	Vertical C&P	Vertical OHGP	Horizontal C&P	Horizontal OHGP
Sand Prevention	4				>
Production Rate	3	т	hird the C	ompletion	
Water Shut- Off/Reserves	2	Er	ngineer n	eeds to det	ermine
Contractor Capability	1		<u>iis</u> well		
Decision Matrix Analy	sis				22

Evaluation Method - Evaluation

Fourth, the Integrated Team evaluates each completion option

- Use of a forced ranking system is required
 - High number = Most Important
- Should Ignore 'Importance' when scoring to ensure fairness

Key Evaluation Factors	Project Importance 4 is High	Vertical C&P	Vertical OHGP	Horizontal C&P	Horizontal OHGP
Sand Prevention		1	3	2	4
Production Rate	Ignore (hide)	1	2	3	4
Water Shut- Off/Reserves	(hide) Importance when	4	3	2	1
Contractor Capability	Scoring	4	2	3	1
Decision Matrix Analysis					23

Evaluation Method - Calculation

Finally, calculate the 'score' for each of the options using the Ranking of the Important Factors

• Each completion selection is a compromise against the Key Factors

Key Evaluation Factors	Project Importance 4 is High	Vertical C&P	Vertical OHGP	Horizontal C&P	Horizontal OHGP
Sand Prevention	4	→ 1	3	2	4
Production Rate	3	→ 1	2	3	4
Water Shut- Off/Reserves	2	→ 4	3	2	1
Contractor Capability	1 —	→ <u>4</u>	2	3	<u>1</u>
Weighted Ranking 19 =4*1+3*1+2*4+1*4					
Decision Matrix Analy	24				

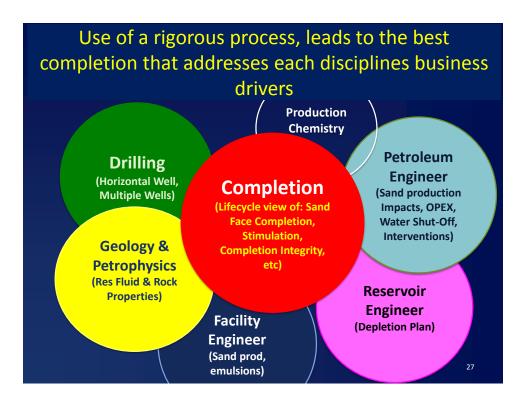
Evaluation Method - Result

The <u>'best'</u> option is a Horizontal Open Hole Gravel Pack
Vertical C&P clearly not the best option

- Team participation means that everyone has buy-in
- And the risks that jeopardize success (Contractor Capability, Water Shut-Off) are well identified and have to be managed

Key Evaluation Factors	Project Importance 4 is High	Vertical C&P	Vertical OHGP	Horizontal C&P	Horizontal OHGP
Sand Prevention	4	1	3	2	4
Production Rate	3	1	2	3	4
Water Shut- Off/Reserves	2	4	3	2	1
Contractor Capability	1	<u>4</u>	<u>2</u>	<u>3</u>	<u>1</u>
Weighte	d Ranking	19	26	24	31

Calculate Well Life

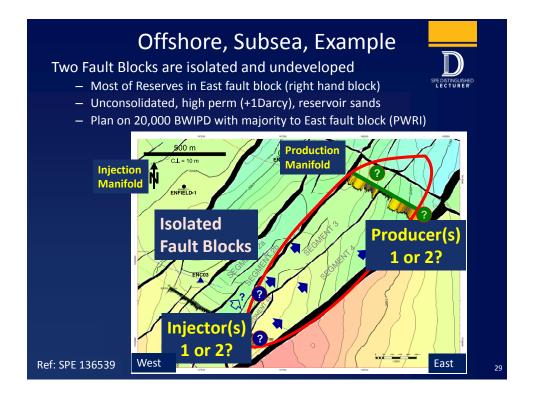

26

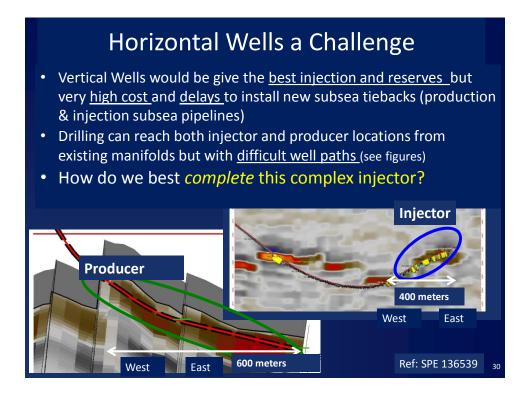
Of course, the calculation of the time to produce the reserves for each option matches the evaluation

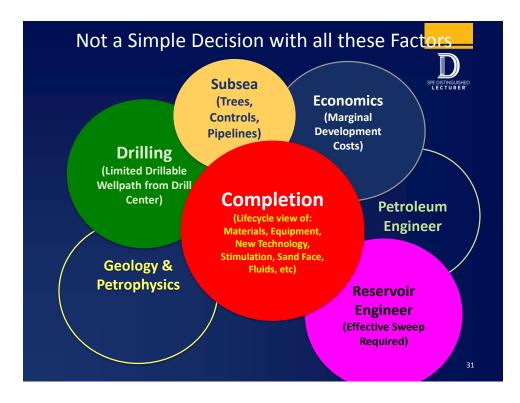
Vert C&P = 5mmBO / (0.5 BOPD/psi * 1000 psi) = 27 years Vert OHGP = 5mmBO/ (0.5 BOPD/psi * 2000 psi) = ~14 years Horiz C&P = 5mmBO / (2 BOPD/psi * 500 psi) = ~14 years Horiz OHGP = 5mmBO / (2 BOPD/psi * 2000 psi) = ~4 years

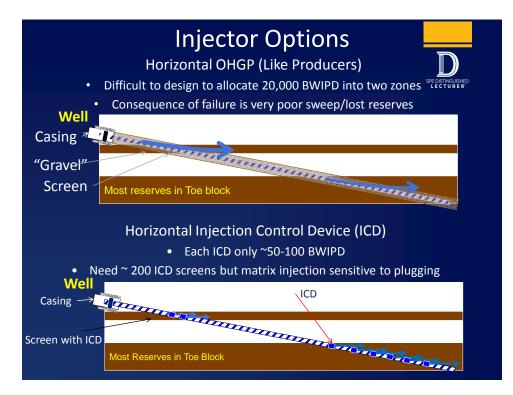
An economic evaluation will prove that the higher costs and higher complexity of the Horiz OHGP is justified

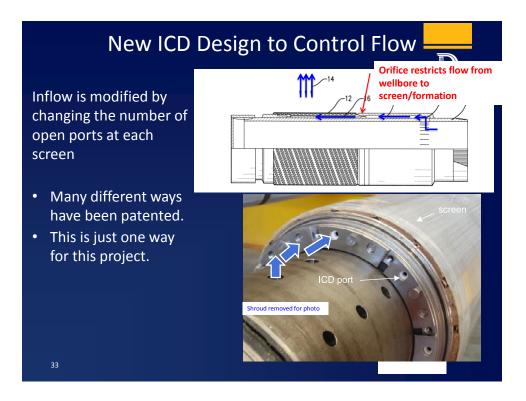
 Economics are an outcome of the decision made – not an input

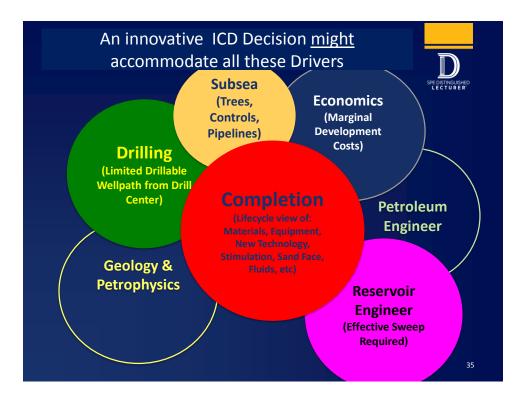



Lets Look at another Real Example




Seismic shows two offshore fault blocks are not being drained


But the blocks are isolated from the aquifer and need water injection to maintain reservoir pressure and provide sweep





Injector Evaluation – Factors - 2

In a real analysis there may be many more factors. List them all, and then rank them all.

In the end only the most important factors – top 5-8 really matter.

Key Evaluation Factors	Project Importance 5 is High
Zonal Water Injection (Reserves)	
Cost	
Schedule	
Sand Control	
Installation Sensitivity (Two Fault Blocks)	
Weighted Ranking	

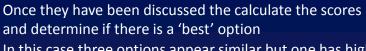
Injector Evaluation - Factors

In the end only the most important factors – top 5-8 really matter.

Re-rank the top factors after the team agrees which ones will be used for the analysis

Key Evaluation Factors	Project Importance 5 is High
Zonal Water Injection (Reserves)	5
Cost	4
Schedule	3
Sand Control	2
Installation Sensitivity (Two Fault Blocks)	1
Weighted Ranking	

Injector Evaluation - Factors


The Completion engineer provides the options.

Usually these have been worked up before and there may be reservoir model evaluations, cost estimates, and schedules for each of these options to consider.

Key Evaluation Factors	Project Importance 5 is High	Two Vertical OHGP	One Hoizontal OHGP	Horiz Conv'l ICD	New Frac ICD
Zonal Water Injection (Reserves)	Hide the factors and Shuffle the Rows in an Actual Evaluation				
Cost					
Schedule					
Sand Control					
Installation Sens. (Two Fault Blocks)					
Weighted Ranking					39

Injector Evaluation - Factors

In this case three options appear similar but one has high costs and slow delivery schedule.

Key Evaluation Factors	Project Importance 5 is High	Two Vertical OHGP	One Horizontal OHGP	Horiz Conv'l ICD	New Frac ICD
Zonal Water Injection (Reserves)	5	4	1	2	3
Cost	4	1	2	3	4
Schedule	3	1	4	3	2
Sand Control	2	4	1	3	2
Installation Sens. (Across Two Fault Blocks)	1	4	1	3	2
Weighted Ranking		39	28	40	43

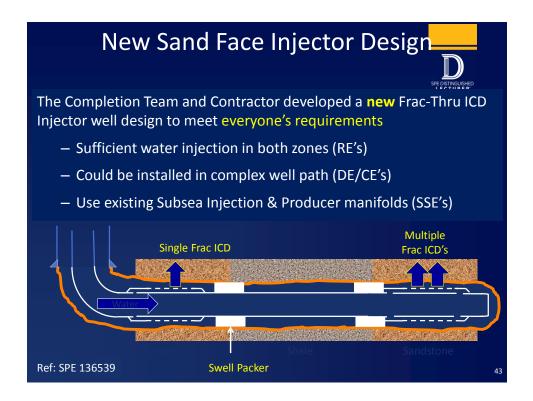
Injector Evaluation - Factors

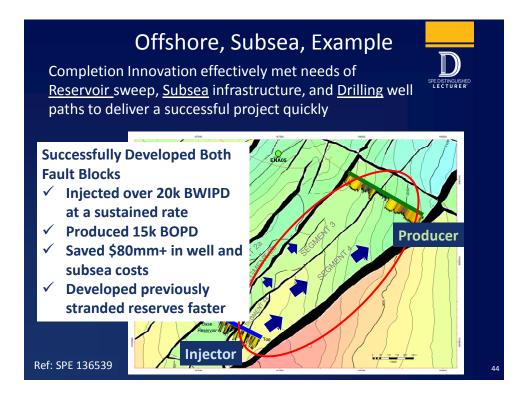
If, after discussion, one option should not be considered then drop it and rescore ----based on the prior scores

i.e. 4 => 3, 3=>2, etc

Do not change the numbers or allow the integrity of the original evaluation to be lost or modified

Key Evaluation Factors	Project Importance 5 is High	Two Vertical OHGP	One Horizontal OHGP	Horiz Conv'l ICD	New Frac ICD
Zonal Water Injection (Reserves)	5 4 Be Flexible 3		lecessary	2	3
Cost	4 Be Flexible 2 But mainta	, Adapt as	evaluatio.	2	3
Schedule	2 vible 2	integrity in	e numbe	2	1
Sand Control	Be Flexmainta	in in change c	1	3	2
Installation Sens. (Two Fault Blocks)	Butdo r	10	evaluaue e numbers. 1 1	3	2
Weighted Ranking			21	33	36


Injector Evaluation - Factors



The best one required new technology but had the most upside on reserves and rates

This had to be worked harder to see if it was possible'
The other, lower option, used on conventional technology
with more sensitivity to water quality and damage

Reserves Key Evaluation Factors	Project Importance 4 is High	Two Vertical OHGP	One Hoizontal OHGP	Horiz Conv'l ICD	New Frac ICD
Zonal Water Injection (Reserves)	5		1	2	3
Cost	4		1	2	3
Schedule	3		3	2	1
Sand Control	2		1	3	2
Installation (Two Fault Blocks)	1		1	3	2
Weighted Ranking			21	33	36

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation :

Click on: Section Evaluation

Society of Petroleum Engineers Distinguished Lecturer Program <u>www.spe.</u>org/dl

